Calorie restriction slows pace of aging in healthy adults | 卡路里限制可減緩健康成年人的衰老速度

中文版谷歌中文翻譯(90% 準確率) | English translation
Buy/Sell Your Domains Here。在這裡購買/出售您的域名
Contact Dr. Lu for information about cancer treatments。聯繫盧博士,獲取有關癌症治療資訊。
Editor’s note:  The general guideline is:  If you do not feel hungry, you do not have to eat.  Human beings are designed so delicately that they know when they should eat and what they should eat.  Overeating, which is responsible for obesity and overweight is a form of abuse, leads to accelerated aging.  When you overeat, you are trying to follow your desire.  The urge to eat is to prompt you to meet the nutritional/physiological needs while the desire to eat is to pursue the pleasure of eating.  It is hard for many people to control how much to eat.  Particularly once you start eating, it is hard to stop.
編者按:一般準則是:如果你不覺得餓,就不必吃。人類被設計得如此精緻,他們知道什麼時候該吃什麼該吃什麼。暴飲暴食是一種虐待,會導致加速衰老。吃的衝動是為了滿足你的營養/生理需求,而吃的慾望是為了追求吃的樂趣。很多人很難控制吃的太多了。尤其是一旦開始吃,就很難停下來。
NEWS RELEASE 

Calorie restriction, a proven intervention to slow aging in animals, showed evidence of slowing the pace of biological aging in a human randomized trial

Peer-Reviewed Publication

COLUMBIA UNIVERSITY’S MAILMAN SCHOOL OF PUBLIC HEALTH

In a first of its kind randomized controlled trial an international team of researchers led by the Butler Columbia Aging Center at the Columbia University Mailman School of Public Health shows that caloric restriction can slow the pace of aging in healthy adults. The CALERIE™ intervention slowed pace of aging measured from participants’ blood DNA methylation using the algorithm DunedinPACE (Pace of Aging, Computed from the Epigenome). The intervention effect on DunedinPACE represented a 2-3 percent slowing in the pace of aging, which in other studies translates to a 10-15 percent reduction in mortality risk, an effect similar to a smoking cessation intervention. The results are published online in the journal Nature Aging.

“In worms, flies, and mice, calorie restriction can slow biological processes of aging and extend healthy lifespan” says senior author Daniel Belsky, PhD, associate professor of epidemiology at Columbia Mailman School and a scientist with Columbia’s Butler Aging Center. “Our study aimed to test if calorie restriction also slows biological aging in humans.”

The CALERIE™ Phase-2 randomized controlled trial, funded by the US National Institute on Aging, is the first ever investigation of the effects of long-term calorie restriction in healthy, non-obese humans. The trial randomized 220 healthy men and women at three sites in the U. S. to a 25 percent calorie-restriction or normal diet for two years.  CALERIE™ is an acronym for ‘Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy’.

To measure biological aging in CALERIE Trial participants, Belsky’s team analyzed blood samples collected from trial participants at pre-intervention baseline and after 12- and 24-months of follow-up. “Humans live a long time,” explained Belsky, “so it isn’t practical to follow them until we see differences in aging-related disease or survival. Instead, we rely on biomarkers developed to measure the pace and progress of biological aging over the duration of the study.” The team analyzed methylation marks on DNA extracted from white blood cells. DNA methylation marks are chemical tags on the DNA sequence that regulate the expression of genes and are known to change with aging.

In the primary analysis Belsky and colleagues focused on three measurements of the DNA methylation data, sometimes known as “epigenetic clocks”. The first two, the PhenoAge and GrimAge clocks, estimate biological age, or the chronological age at which a person’s biology would appear “normal”. These measures can be thought of as “odometers” that provide a static measure of how much aging a person has experienced. The third measure studied by the researchers was DunedinPACE, which estimates the pace of aging, or the rate of biological deterioration over time. DunedinPACE can be thought of as a “speedometer”.

“In contrast to the results for DunedinPace, there were no effects of intervention on other epigenetic clocks,” noted Calen Ryan, PhD, Research Scientist at Columbia’s Butler Aging Center and co-lead author of the study. “The difference in results suggests that dynamic ‘pace of aging’ measures like DunedinPACE may be more sensitive to the effects of intervention than measures of static biological age.”

Our study found evidence that calorie restriction slowed the pace of aging in humans” Ryan said.  “But calorie restriction is probably not for everyone. Our findings are important because they provide evidence from a randomized trial that slowing human aging may be possible. They also give us a sense of the kinds of effects we might look for in trials of interventions that could appeal to more people, like intermittent fasting or time-restricted eating.”

A follow-up of trial participants is now ongoing to determine if the intervention had long-term effects on healthy aging. In other studies, slower DunedinPACE is associated with reduced risk for heart disease, stroke, disability, and dementia.  “Our study of the legacy effects of the CALERIE™ intervention will test if the short-term effects observed during the trial translated into longer-term reduction in aging-related chronic diseases or their risk factors,” says Sai Krupa Das, a senior scientist and CALERIE investigator who is leading the long-term follow up of CALERIE™ participants.

DunedinPACE was developed by Daniel Belsky and colleagues at Duke University and the University of Otago. To develop DunedinPACE, researchers analyzed data from the Dunedin Longitudinal Study, a landmark birth cohort study of human development and aging that follows 1000 individuals born in 1972-73 in Dunedin, New Zealand. Researchers first analyzed the rate of change in 19 biomarkers across 20 years of follow-up to derive a single composite measure of the Pace of Aging. Next, the researchers used machine-learning techniques to distill this 20-year Pace of Aging into a single-time-point DNA methylation blood test. The values of the DunedinPACE algorithm correspond to the years of biological aging experienced during a single calendar year, providing a measure of the pace of aging.

Additional co-authors and their affiliations are listed in the paper, Effect of long-term caloric restriction on DNA methylation measures of biological aging in healthy adults from the CALERIE trial.

The study was supported by US National Institute on Aging grant R01AG061378 and also utilized resources provided by the CALERIE Research Network (R33AG070455) and the Dunedin Study (R01AG032282). Coauthors received additional support from the American Brain Foundation, and NIH grants P30AG028716, R01AG054840, R33AG070455, CIHR RN439810, R01 AG071717, R03AG071549 U01AG060906.

Columbia University Mailman School of Public Health

Founded in 1922, the Columbia University Mailman School of Public Health pursues an agenda of research, education, and service to address the critical and complex public health issues affecting New Yorkers, the nation and the world. The Columbia Mailman School is the fourth largest recipient of NIH grants among schools of public health. Its nearly 300 multi-disciplinary faculty members work in more than 100 countries around the world, addressing such issues as preventing infectious and chronic diseases, environmental health, maternal and child health, health policy, climate change and health, and public health preparedness. It is a leader in public health education with more than 1,300 graduate students from 55 nations pursuing a variety of master’s and doctoral degree programs. The Columbia Mailman School is also home to numerous world-renowned research centers, including ICAP and the Center for Infection and Immunity. For more information, please visit www.mailman.columbia.edu.

 

 

 

 

 

 

 

 

 

 

 

$$$ If you are interested in a writer or editor position, check out here.We are hiring. $$$

27

No Responses

Write a response

eight + 15 =