Press-pulse: a novel therapeutic strategy for the metabolic management of cancer 癌症代謝管理的新治療策略

中文版谷歌中文翻譯(90% 準確率) | English translation
Buy/Sell Your Domains Here。在這裡購買/出售您的域名
Contact Dr. Lu for information about cancer treatments。聯繫盧博士,獲取有關癌症治療資訊。

References

  1. Arens NC, West ID. Press-pulse: a general theory of mass extinction? Paleobiology. 2008;34(4):456–71.View ArticleGoogle Scholar
  2. Seyfried TN, Flores RE, Poff AM, D’Agostino DP. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis. 2014;35(3):515–27.PubMedView ArticleGoogle Scholar
  3. Sonnenschein C, Soto AM. Somatic mutation theory of carcinogenesis: why it should be dropped and replaced. Mol Carcinog. 2000;29(4):205–11.PubMedView ArticleGoogle Scholar
  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedView ArticleGoogle Scholar
  5. Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog. 2013;18(1–2):43–73.PubMedPubMed CentralView ArticleGoogle Scholar
  6. Sporn MB. The war on cancer. Lancet. 1996;347(9012):1377–81.PubMedView ArticleGoogle Scholar
  7. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.PubMedView ArticleGoogle Scholar
  8. Lazebnik Y. What are the hallmarks of cancer? Nat Rev Cancer. 2010;10(4):232–3.PubMedView ArticleGoogle Scholar
  9. Tarin D. Cell and tissue interactions in carcinogenesis and metastasis and their clinical significance. Semin Cancer Biol. 2011;21(2):72–82.PubMedView ArticleGoogle Scholar
  10. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67:7–30.Google Scholar
  11. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.PubMedView ArticleGoogle Scholar
  12. Seyfried TN. Cancer as a metabolic disease: on the origin, management, and prevention of cancer. Hoboken: Wiley; 2012.View ArticleGoogle Scholar
  13. Martincorena I, Campbell PJ. Somatic mutation in cancer and normal cells. Science. 2015;349(6255):1483–9.PubMedView ArticleGoogle Scholar
  14. Seyfried TN. Cancer as a mitochondrial metabolic disease. Front Cell Dev Biol. 2015;3:43.PubMedPubMed CentralView ArticleGoogle Scholar
  15. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.PubMedPubMed CentralView ArticleGoogle Scholar
  16. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz Jr LA, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58.PubMedPubMed CentralView ArticleGoogle Scholar
  17. Mazzocca A, Ferraro G, Misciagna G, Carr BI. A systemic evolutionary approach to cancer: Hepatocarcinogenesis as a paradigm. Med Hypotheses. 2016;93:132–7.PubMedView ArticleGoogle Scholar
  18. Bizzarri M, Cucina A. SMT and TOFT: Why and How they are opposite and incompatible paradigms. Acta Biotheor. 2016;64(3):221–39.PubMedView ArticleGoogle Scholar
  19. Baker SG. A cancer theory kerfuffle can lead to new lines of research. J Natl Cancer Inst. 2015;107(2).Google Scholar
  20. Wishart DS. Is cancer a genetic disease or a metabolic disease? EBioMedicine. 2015;2(6):478–9.PubMedPubMed CentralView ArticleGoogle Scholar
  21. Baker SG, Kramer BS. Paradoxes in carcinogenesis: new opportunities for research directions. BMC Cancer. 2007;7:151.PubMedPubMed CentralView ArticleGoogle Scholar
  22. Burgio E, Migliore L. Towards a systemic paradigm in carcinogenesis: linking epigenetics and genetics. Mol Biol Rep. 2015;42(4):777–90.PubMedView ArticleGoogle Scholar
  23. Soto AM, Sonnenschein C. Is systems biology a promising approach to resolve controversies in cancer research? Cancer Cell Int. 2012;12(1):12.PubMedPubMed CentralView ArticleGoogle Scholar
  24. Braun AC. On the origin of the cancer cells. Am Sci. 1970;58(3):307–20.PubMedGoogle Scholar
  25. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, Martincorena I, Alexandrov LB, Martin S, Wedge DC, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534(7605):47–54.PubMedPubMed CentralView ArticleGoogle Scholar
  26. Stratton MR. Exploring the genomes of cancer cells: progress and promise. Science. 2011;331(6024):1553–8.PubMedView ArticleGoogle Scholar
  27. Cooke SL, Shlien A, Marshall J, Pipinikas CP, Martincorena I, Tubio JM, Li Y, Menzies A, Mudie L, Ramakrishna M, et al. Processed pseudogenes acquired somatically during cancer development. Nat Commun. 2014;5:3644.PubMedPubMed CentralView ArticleGoogle Scholar
  28. Bartesaghi S, Graziano V, Galavotti S, Henriquez NV, Betts J, Saxena J, Minieri V, Deli A, Karlsson A, Martins LM, et al. Inhibition of oxidative metabolism leads to p53 genetic inactivation and transformation in neural stem cells. Proc Natl Acad Sci U S A. 2015;112(4):1059–64.PubMedPubMed CentralView ArticleGoogle Scholar
  29. Pacini N, Borziani F. Oncostatic-Cytoprotective Effect of Melatonin and Other Bioactive Molecules: A Common Target in Mitochondrial Respiration. Int J Mol Sci. 2016;17(3):341.PubMedPubMed CentralView ArticleGoogle Scholar
  30. Kim A. Mitochondria in cancer energy metabolism: culprits or bystanders? Toxicol Res. 2015;31(4):323–30.PubMedPubMed CentralView ArticleGoogle Scholar
  31. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.PubMedView ArticleGoogle Scholar
  32. Warburg O. On the respiratory impairment in cancer cells. Science. 1956;124:269–70.PubMedGoogle Scholar
  33. Putignani L, Raffa S, Pescosolido R, Aimati L, Signore F, Torrisi MR, Grammatico P. Alteration of expression levels of the oxidative phosphorylation system (OXPHOS) in breast cancer cell mitochondria. Breast Cancer Res Treat. 2008;110(3):439–52.PubMedView ArticleGoogle Scholar
  34. Dienel GA, Cruz NF. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism. J Neurochem. 2016;138(1):14–52.PubMedView ArticleGoogle Scholar
  35. Racker E. History of the Pasteur effect and its pathobiology. Mol Cell Biochem. 1974;5(1–2):17–23.PubMedView ArticleGoogle Scholar
  36. Warburg O. The Metabolism of Tumours. New York: Richard R. Smith; 1931.Google Scholar
  37. Seyfried TN. The Warburg dispute. In: Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley; 2012. p. 107–17.View ArticleGoogle Scholar
  38. Zu XL, Guppy M. Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun. 2004;313(3):459–65.PubMedView ArticleGoogle Scholar
  39. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37.PubMedView ArticleGoogle Scholar
  40. Poff AM, Ari C, Seyfried TN, D’Agostino DP. The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS One. 2013;8(6):e65522.PubMedPubMed CentralView ArticleGoogle Scholar
  41. Kiebish MA, Han X, Cheng H, Seyfried TN. In vitro growth environment produces lipidomic and electron transport chain abnormalities in mitochondria from non-tumorigenic astrocytes and brain tumours. ASN Neuro. 2009;1(3):e00011.PubMedPubMed CentralView ArticleGoogle Scholar
  42. Diaz-Ruiz R, Rigoulet M, Devin A. The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta. 2011;1807(6):568–76.PubMedView ArticleGoogle Scholar
  43. Leznev EI, Popova II, Lavrovskaja VP, Evtodienko YV. Comparison of oxygen consumption rates in minimally transformed BALB/3 T3 and virus-transformed 3T3B-SV40 cells. Biochemistry (Mosc). 2013;78(8):904–8.View ArticleGoogle Scholar
  44. Hall A, Meyle KD, Lange MK, Klima M, Sanderhoff M, Dahl C, Abildgaard C, Thorup K, Moghimi SM, Jensen PB, et al. Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the V600EBRAF oncogene. Oncotarget. 2013;4(4):584–99.PubMedPubMed CentralView ArticleGoogle Scholar
  45. Seyfried TN. Is respiration normal in cancer cells? In: Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley; 2012. p. 119–32.View ArticleGoogle Scholar
  46. Hochachka PW, Somero GN. Biochemical Adaptation: Mechanism and Process in Physiological Evolution. New York: Oxford Press; 2002.Google Scholar
  47. Ramanathan A, Wang C, Schreiber SL. Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci U S A. 2005;102(17):5992–7.PubMedPubMed CentralView ArticleGoogle Scholar
  48. Arcos JC, Tison MJ, Gosch HH, Fabian JA. Sequential alterations in mitochondrial inner and outer membrane electron transport and in respiratory control during feeding of amino azo dyes; stability of phosphorylation. Correlation with swelling-contraction changes and tumorigenesis threshold. Cancer Res. 1969;29(6):1298–305.PubMedGoogle Scholar
  49. Suarez RK, Lighton JR, Brown GS, Mathieu-Costello O. Mitochondrial respiration in hummingbird flight muscles. Proc Natl Acad Sci U S A. 1991;88(11):4870–3.PubMedPubMed CentralView ArticleGoogle Scholar
  50. Burk D, Schade AL. On respiratory impairment in cancer cells. Science. 1956;124(3215):270–2.PubMedGoogle Scholar
  51. Smith AE, Kenyon DH. A unifying concept of carcinogenesis and its therapeutic implications. Oncology. 1973;27(5):459–79.PubMedView ArticleGoogle Scholar
  52. Colowick SP. The status of Warburg’s theory of glycolysis and respiration in tumors. Q Rev Biol. 1961;36:273–6.View ArticleGoogle Scholar
  53. Hu Y, Lu W, Chen G, Wang P, Chen Z, Zhou Y, Ogasawara M, Trachootham D, Feng L, Pelicano H, et al. K-ras (G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res. 2012;22(2):399–412.PubMedView ArticleGoogle Scholar
  54. Cuezva JM, Chen G, Alonso AM, Isidoro A, Misek DE, Hanash SM, Beer DG. The bioenergetic signature of lung adenocarcinomas is a molecular marker of cancer diagnosis and prognosis. Carcinogenesis. 2004;25(7):1157–63.PubMedView ArticleGoogle Scholar
  55. Ferreira LM. Cancer metabolism: the Warburg effect today. Exp Mol Pathol. 2010;89(3):372–80.PubMedView ArticleGoogle Scholar
  56. Seyfried TN, Shelton LM. Cancer as a metabolic disease. Nutr Metab (Lond). 2010;7(1):7.View ArticleGoogle Scholar
  57. Poff AM, Ari C, Arnold P, Seyfried TN, D’Agostino DP. Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer. Int J Cancer. 2014;135(7):1711–20.PubMedPubMed CentralView ArticleGoogle Scholar
  58. Pedersen PL. Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr. 2007;39(3):211–22.PubMedView ArticleGoogle Scholar
  59. Warburg O. Revidsed Lindau Lectures: The prime cause of cancer and prevention – Parts 1 & 2. In: Lindau BD, editor. Meeting of the Nobel-Laureates. Lake Constance: K. Triltsch; 1969. p. 1–9.http://www.hopeforcancer.com/OxyPlus.htm.Google Scholar
  60. Racker E. Bioenergetics and the problem of tumor growth. Am Sci. 1972;60(1):56–63.PubMedGoogle Scholar
  61. Weinhouse S. The Warburg hypothesis fifty years later. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 1976;87(2):115–26.PubMedView ArticleGoogle Scholar
  62. Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang XL, Rajagopalan KN, Maddie M, Vemireddy V, Zhao Z, et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 2012;15(6):827–37.PubMedPubMed CentralView ArticleGoogle Scholar
  63. Seyfried TN. Respiratory dysfunction in cancer cells. In: Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley; 2012. p. 73–105.View ArticleGoogle Scholar
  64. Lichtor T, Dohrmann GJ. Respiratory patterns in human brain tumors. Neurosurgery. 1986;19(6):896–9.PubMedView ArticleGoogle Scholar
  65. Seyfried TN, Mukherjee P. Targeting energy metabolism in brain cancer: review and hypothesis. Nutr Metab (Lond). 2005;2:30.View ArticleGoogle Scholar
  66. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.PubMedPubMed CentralView ArticleGoogle Scholar
  67. Cuezva JM, Krajewska M, de Heredia ML, Krajewski S, Santamaria G, Kim H, Zapata JM, Marusawa H, Chamorro M, Reed JC. The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res. 2002;62(22):6674–81.PubMedGoogle Scholar
  68. Pedersen PL. Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res. 1978;22:190–274.PubMedView ArticleGoogle Scholar
  69. Morton R, Cunningham C, Jester R, Waite M, Miller N, Morris HP. Alteration of mitochondrial function and lipid composition in Morris 7777 hepatoma. Cancer Res. 1976;36(9 pt.1):3246–54.PubMedGoogle Scholar
  70. Schild L, Lendeckel U, Gardemann A, Wiswedel I, Schmidt CA, Wolke C, Walther R, Grabarczyk P, Busemann C. Composition of molecular cardiolipin species correlates with proliferation of lymphocytes. Exp Biol Med. 2012;237(4):372–9.View ArticleGoogle Scholar
  71. Sapandowski A, Stope M, Evert K, Evert M, Zimmermann U, Peter D, Page I, Burchardt M, Schild L. Cardiolipin composition correlates with prostate cancer cell proliferation. Mol Cell Biochem. 2015;410(1–2):175–85.PubMedView ArticleGoogle Scholar
  72. Canuto RA, Biocca ME, Muzio G, Dianzani MU. Fatty acid composition of phospholipids in mitochondria and microsomes during diethylnitrosamine carcinogenesis in rat liver. Cell Biochem Funct. 1989;7(1):11–9.PubMedView ArticleGoogle Scholar
  73. Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res. 2008;49(12):2545–56.PubMedPubMed CentralView ArticleGoogle Scholar
  74. Peyta L, Jarnouen K, Pinault M, Guimaraes C, de Barros JP P, Chevalier S, Dumas JF, Maillot F, Hatch GM, Loyer P, et al. Reduced cardiolipin content decreases respiratory chain capacities and increases ATP synthesis yield in the human HepaRG cells. Biochim Biophys Acta. 2016;4:443–53.View ArticleGoogle Scholar
  75. Kiebish MA, Han X, Cheng H, Seyfried TN. Mitochondrial lipidome and electron transport chain alterations in non-metastatic and metastatic murine brain tumors. J Neurochem. 2008;104 Suppl 1:37–8.Google Scholar
  76. Claypool SM, Koehler CM. The complexity of cardiolipin in health and disease. Trends Biochem Sci. 2012;37(1):32–41.PubMedView ArticleGoogle Scholar
  77. Ren M, Phoon CK, Schlame M. Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res. 2014;55:1–16.PubMedView ArticleGoogle Scholar
  78. Chinopoulos C. Which way does the citric acid cycle turn during hypoxia? The critical role of alpha-ketoglutarate dehydrogenase complex. J Neurosci Res. 2013;91(8):1030–43.PubMedView ArticleGoogle Scholar
  79. Peiris-Pages M, Martinez-Outschoorn UE, Pestell RG, Sotgia F, Lisanti MP. Cancer stem cell metabolism. Breast Cancer Res. 2016;18(1):55.PubMedPubMed CentralView ArticleGoogle Scholar
  80. Deighton RF, Le Bihan T, Martin SF, Gerth AM, McCulloch M, Edgar JM, Kerr LE, Whittle IR, McCulloch J. Interactions among mitochondrial proteins altered in glioblastoma. J Neuro-Oncol. 2014;118(2):247–56.View ArticleGoogle Scholar
  81. Arismendi-Morillo GJ, Castellano-Ramirez AV. Ultrastructural mitochondrial pathology in human astrocytic tumors: potentials implications pro-therapeutics strategies. J Electron Microsc (Tokyo). 2008;57(1):33–9.View ArticleGoogle Scholar
  82. Schmitt S, Schulz S, Schropp EM, Eberhagen C, Simmons A, Beisker W, Aichler M, Zischka H. Why to compare absolute numbers of mitochondria. Mitochondrion. 2014;19 Pt A:113–23.PubMedView ArticleGoogle Scholar
  83. Verschoor ML, Ungard R, Harbottle A, Jakupciak JP, Parr RL, Singh G. Mitochondria and cancer: past, present, and future. Biomed Res Int. 2013;2013:612369.PubMedPubMed CentralView ArticleGoogle Scholar
  84. Srinivasan S, Guha M, Dong DW, Whelan KA, Ruthel G, Uchikado Y, Natsugoe S, Nakagawa H, Avadhani NG. Disruption of cytochrome c oxidase function induces the Warburg effect and metabolic reprogramming. Oncogene. 2015;35:1585–95.Google Scholar
  85. Sriskanthadevan S, Jeyaraju DV, Chung TE, Prabha S, Xu W, Skrtic M, Jhas B, Hurren R, Gronda M, Wang X, et al. AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress. Blood. 2015;125(13):2120–30.PubMedPubMed CentralView ArticleGoogle Scholar
  86. Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010;330(6009):1340–4.PubMedView ArticleGoogle Scholar
  87. Kaipparettu BA, Ma Y, Park JH, Lee TL, Zhang Y, Yotnda P, Creighton CJ, Chan WY, Wong LJ. Crosstalk from non-cancerous mitochondria can inhibit tumor properties of metastatic cells by suppressing oncogenic pathways. PLoS One. 2013;8(5):e61747.PubMedPubMed CentralView ArticleGoogle Scholar
  88. Seyfried TN. Mitochondria: The ultimate tumor suppressor. In: Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley; 2012. p. 195–205.View ArticleGoogle Scholar
  89. Kloc M, Li XC, Ghobrial RM. Are Macrophages Responsible for Cancer Metastasis? J Immuno Biol. 2016;1:1.Google Scholar
  90. Pawelek JM, Chakraborty AK. Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer. 2008;8(5):377–86.PubMedView ArticleGoogle Scholar
  91. Bastida-Ruiz D, Van Hoesen K, Cohen M: The Dark Side of Cell Fusion. Int J Mol Sci. 2016, 17 (5). doi:https://doi.org/10.3390/ijms17050638
  92. Seyfried TN. Mitochondrial respiratory dysfunction and the extrachromosomal origin of cancer. In: Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley; 2012. p. 253–9.View ArticleGoogle Scholar
  93. Nemeth B, Doczi J, Csete D, Kacso G, Ravasz D, Adams D, Kiss G, Nagy AM, Horvath G, Tretter L, et al. Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage. FASEB J. 2016;30(1):286–300.PubMedView ArticleGoogle Scholar
  94. Seyfried TN. Is mitochondrial glutamine fermentation a missing link in the metabolic theory of cancer? In: Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley; 2012. p. 133–44.View ArticleGoogle Scholar
  95. Chinopoulos C, Gerencser AA, Mandi M, Mathe K, Torocsik B, Doczi J, Turiak L, Kiss G, Konrad C, Vajda S, et al. Forward operation of adenine nucleotide translocase during F0F1-ATPase reversal: critical role of matrix substrate-level phosphorylation. FASEB J. 2010;24(7):2405–16.PubMedPubMed CentralView ArticleGoogle Scholar
  96. Phillips D, Aponte AM, French SA, Chess DJ, Balaban RS. Succinyl-CoA synthetase is a phosphate target for the activation of mitochondrial metabolism. Biochemistry. 2009;48(30):7140–9.PubMedPubMed CentralView ArticleGoogle Scholar
  97. Schwimmer C, Lefebvre-Legendre L, Rak M, Devin A, Slonimski PP, di Rago JP, Rigoulet M. Increasing mitochondrial substrate-level phosphorylation can rescue respiratory growth of an ATP synthase-deficient yeast. J Biol Chem. 2005;280(35):30751–9.PubMedView ArticleGoogle Scholar
  98. Kiss G, Konrad C, Pour-Ghaz I, Mansour JJ, Nemeth B, Starkov AA, Adam-Vizi V, Chinopoulos C. Mitochondrial diaphorases as NAD (+) donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition. FASEB J. 2014;28(4):1682–97.PubMedPubMed CentralView ArticleGoogle Scholar
  99. Newsholme EA, Board M. Application of metabolic-control logic to fuel utilization and its significance in tumor cells. Adv Enzyme Regul. 1991;31:225–46.PubMedView ArticleGoogle Scholar
  100. DeBerardinis RJ, Cheng T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29(3):313–24.PubMedView ArticleGoogle Scholar
  101. Yuneva M. Finding an “Achilles’ heel” of cancer: the role of glucose and glutamine metabolism in the survival of transformed cells. Cell Cycle. 2008;7(14):2083–9.PubMedView ArticleGoogle Scholar
  102. Medina MA. Glutamine and cancer. J Nutr. 2001;131(9 Suppl):2539–2542S. discussion 2550S-2531S.Google Scholar
  103. Huang W, Choi W, Chen Y, Zhang Q, Deng H, He W, Shi Y. A proposed role for glutamine in cancer cell growth through acid resistance. Cell Res. 2013;23(5):724–7.PubMedPubMed CentralView ArticleGoogle Scholar
  104. Nakashima RA, Paggi MG, Pedersen PL. Contributions of glycolysis and oxidative phosphorylation to adenosine 5′-triphosphate production in AS-30D hepatoma cells. Cancer Res. 1984;44(12 Pt 1):5702–6.PubMedGoogle Scholar
  105. Ta NL, Seyfried TN. Influence of Serum and Hypoxia on Incorporation of [(14) C]-D-Glucose or [(14) C]-L-Glutamine into Lipids and Lactate in Murine Glioblastoma Cells. Lipids. 2015;50(12):1167–84.PubMedView ArticleGoogle Scholar
  106. Portais JC, Voisin P, Merle M, Canioni P. Glucose and glutamine metabolism in C6 glioma cells studied by carbon 13 NMR. Biochimie. 1996;78(3):155–64.PubMedView ArticleGoogle Scholar
  107. Scott DA, Richardson AD, Filipp FV, Knutzen CA, Chiang GG, Ronai ZA, Osterman AL, Smith JW. Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect. J Biol Chem. 2011;286(49):42626–34.PubMedPubMed CentralView ArticleGoogle Scholar
  108. Shelton LM, Huysentruyt LC, Seyfried TN. Glutamine targeting inhibits systemic metastasis in the VM-M3 murine tumor model. Int J Cancer. 2010;127(10):2478–85.PubMedPubMed CentralView ArticleGoogle Scholar
  109. Pisarenko OI, Solomatina ES, Ivanov VE, Studneva IM, Kapelko VI, Smirnov VN. On the mechanism of enhanced ATP formation in hypoxic myocardium caused by glutamic acid. Basic Res Cardiol. 1985;80(2):126–34.PubMedView ArticleGoogle Scholar
  110. Weinberg JM, Venkatachalam MA, Roeser NF, Nissim I. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc Natl Acad Sci U S A. 2000;97(6):2826–31.PubMedPubMed CentralView ArticleGoogle Scholar
  111. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature. 2013;496(7444):238–42.PubMedPubMed CentralView ArticleGoogle Scholar
  112. Hochachka PW, Owen TG, Allen JF, Whittow GC. Multiple end products of anaerobiosis in diving vertebrates. Comp Biochem Physiol B. 1975;50(1):17–22.PubMedGoogle Scholar
  113. King A, Selak MA, Gottlieb E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene. 2006;25(34):4675–82.PubMedView ArticleGoogle Scholar
  114. Marsh J, Mukherjee P, Seyfried TN. Akt-dependent proapoptotic effects of dietary restriction on late-stage management of a phosphatase and tensin homologue/tuberous sclerosis complex 2-deficient mouse astrocytoma. Clin Cancer Res. 2008;14(23):7751–62.PubMedView ArticleGoogle Scholar
  115. Semenza GL. HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenerg Biomembr. 2007;39(3):231–4.PubMedView ArticleGoogle Scholar
  116. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL. HIF-1 Inhibits Mitochondrial Biogenesis and Cellular Respiration in VHL-Deficient Renal Cell Carcinoma by Repression of C-MYC Activity. Cancer Cell. 2007;11(5):407–20.PubMedView ArticleGoogle Scholar
  117. Comerford SA, Huang Z, Du X, Wang Y, Cai L, Witkiewicz AK, Walters H, Tantawy MN, Fu A, Manning HC, et al. Acetate dependence of tumors. Cell. 2014;159(7):1591–602.PubMedPubMed CentralView ArticleGoogle Scholar
  118. Hosios AM, Vander Heiden MG. Acetate metabolism in cancer cells. Cancer & metabolism. 2014;2(1):27.View ArticleGoogle Scholar
  119. Ballard FJ. Supply and utilization of acetate in mammals. Am J Clin Nutr. 1972;25(8):773–9.PubMedGoogle Scholar
  120. Jaworski DM, Namboodiri AM, Moffett JR. Acetate as a Metabolic and Epigenetic Modifier of Cancer Therapy. J Cell Biochem. 2015;117:574–88.Google Scholar
  121. Huysentruyt LC, Seyfried TN. Perspectives on the mesenchymal origin of metastatic cancer. Cancer Metastasis Rev. 2010;29(4):695–707.PubMedPubMed CentralView ArticleGoogle Scholar
  122. Pawelek JM. Tumour-cell fusion as a source of myeloid traits in cancer. Lancet Oncol. 2005;6(12):988–93.PubMedView ArticleGoogle Scholar
  123. Ruff MR, Pert CB. Small cell carcinoma of the lung: macrophage-specific antigens suggest hemopoietic stem cell origin. Science. 1984;225(4666):1034–6.PubMedView ArticleGoogle Scholar
  124. Powell AE, Anderson EC, Davies PS, Silk AD, Pelz C, Impey S, Wong MH. Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming. Cancer Res. 2011;71(4):1497–505.PubMedPubMed CentralView ArticleGoogle Scholar
  125. Yeh MH, Chang YH, Tsai YC, Chen SL, Huang TS, Chiu JF, Ch’ang HJ. Bone marrow derived macrophages fuse with intestine stromal cells and contribute to chronic fibrosis after radiation. Radiother Oncol. 2016;119(2):250–8.PubMedView ArticleGoogle Scholar
  126. Abodief WT, Dey P, Al-Hattab O. Cell cannibalism in ductal carcinoma of breast. Cytopathology. 2006;17(5):304–5.PubMedView ArticleGoogle Scholar
  127. Fais S. Cannibalism: a way to feed on metastatic tumors. Cancer Lett. 2007;258(2):155–64.PubMedView ArticleGoogle Scholar
  128. Lugini L, Matarrese P, Tinari A, Lozupone F, Federici C, Iessi E, Gentile M, Luciani F, Parmiani G, Rivoltini L, et al. Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Cancer Res. 2006;66(7):3629–38.PubMedView ArticleGoogle Scholar
  129. Matarrese P, Ciarlo L, Tinari A, Piacentini M, Malorni W. Xeno-cannibalism as an exacerbation of self-cannibalism: a possible fruitful survival strategy for cancer cells. Curr Pharm Des. 2008;14(3):245–52.PubMedView ArticleGoogle Scholar
  130. Gupta K, Dey P. Cell cannibalism: diagnostic marker of malignancy. Diagn Cytopathol. 2003;28(2):86–7.PubMedView ArticleGoogle Scholar
  131. Kojima S, Sekine H, Fukui I, Ohshima H. Clinical significance of “cannibalism” in urinary cytology of bladder cancer. Acta Cytol. 1998;42(6):1365–9.PubMedView ArticleGoogle Scholar
  132. Shelton LM. Targeting energy metabolism in brain cancer. Chestnut Hill: Boston College; 2010.Google Scholar
  133. Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W, Grabocka E, Vander Heiden MG, Miller G, Drebin JA, Bar-Sagi D, et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 2015;75(3):544–53.PubMedPubMed CentralView ArticleGoogle Scholar
  134. Lu J, Sharma LK, Bai Y. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Res. 2009;19(7):802–15.PubMedPubMed CentralView ArticleGoogle Scholar
  135. Yang D, Wang MT, Tang Y, Chen Y, Jiang H, Jones TT, Rao K, Brewer GJ, Singh KK, Nie D. Impairment of mitochondrial respiration in mouse fibroblasts by oncogenic H-RAS (Q61L). Cancer Biol Ther. 2010;9(2):122–33.PubMedPubMed CentralView ArticleGoogle Scholar
  136. Smiraglia DJ, Kulawiec M, Bistulfi GL, Gupta SG, Singh KK. A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol Ther. 2008;7(8):1182–90.PubMedPubMed CentralView ArticleGoogle Scholar
  137. Delsite RL, Rasmussen LJ, Rasmussen AK, Kalen A, Goswami PC, Singh KK. Mitochondrial impairment is accompanied by impaired oxidative DNA repair in the nucleus. Mutagenesis. 2003;18(6):497–503.PubMedView ArticleGoogle Scholar
  138. Kulawiec M, Safina A, Desouki MM, Still I, Matsui SI, Bakin A, Singh KK. Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion. Cancer Biol Ther. 2008;7(11):1732–43.PubMedPubMed CentralView ArticleGoogle Scholar
  139. Rasmussen AK, Chatterjee A, Rasmussen LJ, Singh KK. Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae. Nucleic Acids Res. 2003;31(14):3909–17.PubMedPubMed CentralView ArticleGoogle Scholar
  140. Chandra D, Singh KK. Genetic insights into OXPHOS defect and its role in cancer. Biochim Biophys Acta. 2011;1807(6):620–5.PubMedView ArticleGoogle Scholar
  141. Veatch JR, McMurray MA, Nelson ZW, Gottschling DE. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell. 2009;137(7):1247–58.PubMedPubMed CentralView ArticleGoogle Scholar
  142. Samper E, Nicholls DG, Melov S. Mitochondrial oxidative stress causes chromosomal instability of mouse embryonic fibroblasts. Aging Cell. 2003;2(5):277–85.PubMedView ArticleGoogle Scholar
  143. Seoane M, Mosquera-Miguel A, Gonzalez T, Fraga M, Salas A, Costoya JA. The Mitochondrial Genome Is a “Genetic Sanctuary” during the Oncogenic Process. PLoS One. 2011;6(8):e23327.PubMedPubMed CentralView ArticleGoogle Scholar
  144. Minocherhomji S, Tollefsbol TO, Singh KK. Mitochondrial regulation of epigenetics and its role in human diseases. Epigenetics. 2012;7(4):326–34.PubMedPubMed CentralView ArticleGoogle Scholar
  145. Veech RL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids. 2004;70(3):309–19.PubMedView ArticleGoogle Scholar
  146. Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer. 2014;14(11):709–21.PubMedPubMed CentralView ArticleGoogle Scholar
  147. Klaunig JE, Kamendulis LM, Hocevar BA. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol. 2010;38(1):96–109.PubMedView ArticleGoogle Scholar
  148. Szent-Gyorgyi A. The living state and cancer. Proc Natl Acad Sci U S A. 1977;74(7):2844–7.PubMedPubMed CentralView ArticleGoogle Scholar
  149. Cairns J. The origin of human cancers. Nature. 1981;289(5796):353–7.PubMedView ArticleGoogle Scholar
  150. Mukherjee S. The Emperor of All Maladies: A Biography of Cancer (pages 285, 303, 333, 342). New York: Scribner; 2010.Google Scholar
  151. Potts R. Environmental hypotheses of hominin evolution. Am J Phys Anthropol. 1998;Suppl 27:93–136.PubMedView ArticleGoogle Scholar
  152. Potts R. Humanity’s Descent: The Consequences of Ecological Instability. New York: William Morrow & Co., Inc.; 1996.Google Scholar
  153. Potts R. Complexity of Adaptibility in Human Evolution. In: Goodman M, Moffat AS, editors. Probing Human Origins. edn. Cambridge: American Academy of Arts & Sciences; 2002. p. 33–57.Google Scholar
  154. Seyfried TN. Nothing in cancer biology makes sense except in the light of evolution. In: Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley; 2012. p. 261–75.View ArticleGoogle Scholar
  155. Darwin C. On the Origin of Species by Means of Natural Selection, or on the Preservation of Favored Races in the Struggle for Life. London: John Murry; 1859.Google Scholar
  156. Moiseeva O, Bourdeau V, Roux A, Deschenes-Simard X, Ferbeyre G. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol. 2009;29(16):4495–507.PubMedPubMed CentralView ArticleGoogle Scholar
  157. de Groof AJ, te Lindert MM, van Dommelen MM, Wu M, Willemse M, Smift AL, Winer M, Oerlemans F, Pluk H, Fransen JA, et al. Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype. Mol Cancer. 2009;8:54.PubMedPubMed CentralView ArticleGoogle Scholar
  158. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM. p53 regulates mitochondrial respiration. Science. 2006;312(5780):1650–3.PubMedView ArticleGoogle Scholar
  159. Galmiche A, Fueller J. RAF kinases and mitochondria. Biochim Biophys Acta. 2007;1773(8):1256–62.PubMedView ArticleGoogle Scholar
  160. Kerr EM, Gaude E, Turrell FK, Frezza C, Martins CP. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature. 2016;531(7592):110–3.PubMedPubMed CentralView ArticleGoogle Scholar
  161. Grabacka M, Pierzchalska M, Reiss K. Peroxisome Proliferator Activated Receptor alpha Ligands As Anti-Cancer Drugs Targeting Mitochondrial Metabolism. Curr Pharm Biotechnol. 2013;14:342–56.Google Scholar
  162. Eales KL, Hollinshead KE, Tennant DA. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis. 2016;5:e190.PubMedPubMed CentralView ArticleGoogle Scholar
  163. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 2005;65(2):613–21.PubMedGoogle Scholar
  164. Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest. 2013;123(9):3678–84.PubMedPubMed CentralView ArticleGoogle Scholar
  165. Rozhok AI, DeGregori J. Toward an evolutionary model of cancer: Considering the mechanisms that govern the fate of somatic mutations. Proc Natl Acad Sci U S A. 2015;112(29):8914–21.PubMedPubMed CentralView ArticleGoogle Scholar
  166. Mukherjee P, Mulrooney TJ, Marsh J, Blair D, Chiles TC, Seyfried TN. Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain. Mol Cancer. 2008;7:37.PubMedPubMed CentralView ArticleGoogle Scholar
  167. Mukherjee P, Sotnikov AV, Mangian HJ, Zhou JR, Visek WJ, Clinton SK. Energy intake and prostate tumor growth, angiogenesis, and vascular endothelial growth factor expression. J Natl Cancer Inst. 1999;91(6):512–23.PubMedView ArticleGoogle Scholar
  168. Nebeling LC, Miraldi F, Shurin SB, Lerner E. Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr. 1995;14(2):202–8.PubMedView ArticleGoogle Scholar
  169. Zuccoli G, Marcello N, Pisanello A, Servadei F, Vaccaro S, Mukherjee P, Seyfried TN. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report. Nutr Metab (Lond). 2010;7(1):33.View ArticleGoogle Scholar
  170. Mukherjee P, El-Abbadi MM, Kasperzyk JL, Ranes MK, Seyfried TN. Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model. Br J Cancer. 2002;86(10):1615–21.PubMedPubMed CentralView ArticleGoogle Scholar
  171. Mukherjee P, Abate LE, Seyfried TN. Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin Cancer Res. 2004;10(16):5622–9.PubMedView ArticleGoogle Scholar
  172. Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer. 2003;89(7):1375–82.PubMedPubMed CentralView ArticleGoogle Scholar
  173. Seyfried TN, Mukherjee P. Anti-Angiogenic and Pro-Apoptotic Effects of Dietary Restriction in Experimental Brain Cancer: Role of Glucose and Ketone Bodies. In: Meadows GG, editor. Integration/Interaction of Oncologic Growth. Volume 15. 2nd ed. New York: Kluwer; 2005. p. 259–70.View ArticleGoogle Scholar
  174. Zhou W, Mukherjee P, Kiebish MA, Markis WT, Mantis JG, Seyfried TN. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab (Lond). 2007;4:5.View ArticleGoogle Scholar
  175. Soto AM, Sonnenschein C. The somatic mutation theory of cancer: growing problems with the paradigm? Bioessays. 2004;26(10):1097–107.PubMedView ArticleGoogle Scholar
  176. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.PubMedView ArticleGoogle Scholar
  177. Cahill Jr GF. Fuel metabolism in starvation. Annu Rev Nutr. 2006;26:1–22.PubMedView ArticleGoogle Scholar
  178. Magee BA, Potezny N, Rofe AM, Conyers RA. The inhibition of malignant cell growth by ketone bodies. Aust J Exp Biol Med Sci. 1979;57(5):529–39.PubMedView ArticleGoogle Scholar
  179. Skinner R, Trujillo A, Ma X, Beierle EA. Ketone bodies inhibit the viability of human neuroblastoma cells. J Pediatr Surg. 2009;44(1):212–6. discussion 216.PubMedView ArticleGoogle Scholar
  180. Maurer GD, Brucker DP, Baehr O, Harter PN, Hattingen E, Walenta S, Mueller-Klieser W, Steinbach JP, Rieger J. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer. 2011;11(1):315.PubMedPubMed CentralView ArticleGoogle Scholar
  181. Chang HT, Olson LK, Schwartz KA. Ketolytic and glycolytic enzymatic expression profiles in malignant gliomas: implication for ketogenic diet therapy. Nutr Metab. 2013;10(1):47.View ArticleGoogle Scholar
  182. Mulrooney TJ, Marsh J, Urits I, Seyfried TN, Mukherjee P. Influence of Caloric Restriction on Constitutive Expression of NF-kappaB in an Experimental Mouse Astrocytoma. PLoS One. 2011;6(3):e18085.PubMedPubMed CentralView ArticleGoogle Scholar
  183. Abdelwahab MG, Fenton KE, Preul MC, Rho JM, Lynch A, Stafford P, Scheck AC. The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS One. 2012;7(5):e36197.PubMedPubMed CentralView ArticleGoogle Scholar
  184. Martuscello RT, Vedam-Mai V, McCarthy DJ, Schmoll ME, Jundi MA, Louviere CD, Griffith BG, Skinner CL, Suslov O, Deleyrolle LP, et al. A Supplemented High-Fat Low-Carbohydrate Diet for the Treatment of Glioblastoma. Clin Cancer Res. 2015;22:2482–95.Google Scholar
  185. Vincent M. Cancer: a de-repression of a default survival program common to all cells?: a life-history perspective on the nature of cancer. BioEssays. 2012;34(1):72–82.PubMedView ArticleGoogle Scholar
  186. Cervantes-Madrid D, Romero Y, Duenas-Gonzalez A. Reviving Lonidamine and 6-Diazo-5-oxo-L-norleucine to Be Used in Combination for Metabolic Cancer Therapy. Biomed Res Int. 2015;2015:690492.PubMedPubMed CentralView ArticleGoogle Scholar
  187. Freeman JM, Kossoff EH. Ketosis and the ketogenic diet, 2010: advances in treating epilepsy and other disorders. Adv Pediatr. 2010;57(1):315–29.PubMedView ArticleGoogle Scholar
  188. Kossoff EH, Hartman AL. Ketogenic diets: new advances for metabolism-based therapies. Curr Opin Neurol. 2012;25(2):173.PubMedPubMed CentralView ArticleGoogle Scholar
  189. Meidenbauer JJ, Mukherjee P, Seyfried TN. The glucose ketone index calculator: a simple tool to monitor therapeutic efficacy for metabolic management of brain cancer. Nutr Metab (Lond). 2015;12:12.View ArticleGoogle Scholar
  190. Poff AM, Ward N, Seyfried TN, Arnold P, D’Agostino DP. Non-Toxic Metabolic Management of Metastatic Cancer in VM Mice: Novel Combination of Ketogenic Diet, Ketone Supplementation, and Hyperbaric Oxygen Therapy. PLoS One. 2015;10(6):e0127407.PubMedPubMed CentralView ArticleGoogle Scholar
  191. Burt ME, Gorschboth CM, Brennan MF. A controlled, prospective, randomized trial evaluating the metabolic effects of enteral and parenteral nutrition in the cancer patient. Cancer. 1982;49(6):1092–105.PubMedView ArticleGoogle Scholar
  192. Campbell TC. Dietary protein, growth factors, and cancer. Am J Clin Nutr. 2007;85(6):1667.PubMedGoogle Scholar
  193. Lu Z, Xie J, Wu G, Shen J, Collins R, Chen W, Kang X, Luo M, Zou Y, Huang LJ, et al. Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nature. 2017;23:79–90.Google Scholar
  194. Jiang YS, Wang FR. Caloric restriction reduces edema and prolongs survival in a mouse glioma model. J Neuro-Oncol. 2013;114(1):25–32.View ArticleGoogle Scholar
  195. Tisdale MJ, Brennan RA. A comparison of long-chain triglycerides and medium-chain triglycerides on weight loss and tumour size in a cachexia model. Br J Cancer. 1988;58(5):580–3.PubMedPubMed CentralView ArticleGoogle Scholar
  196. Tisdale MJ, Brennan RA, Fearon KC. Reduction of weight loss and tumour size in a cachexia model by a high fat diet. Br J Cancer. 1987;56(1):39–43.PubMedPubMed CentralView ArticleGoogle Scholar
  197. Lussier DM, Woolf EC, Johnson JL, Brooks KS, Blattman JN, Scheck AC. Enhanced immunity in a mouse model of malignant glioma is mediated by a therapeutic ketogenic diet. BMC Cancer. 2016;16:310.PubMedPubMed CentralView ArticleGoogle Scholar
  198. Shukla SK, Gebregiworgis T, Purohit V, Chaika NV, Gunda V, Radhakrishnan P, Mehla K, Pipinos II, Powers R, Yu F, et al. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer metabolism. 2014;2:18.PubMedPubMed CentralView ArticleGoogle Scholar
  199. Morscher RJ, Aminzadeh-Gohari S, Feichtinger RG, Mayr JA, Lang R, Neureiter D, Sperl W, Kofler B. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model. PLoS One. 2015;10(6):e0129802.PubMedPubMed CentralView ArticleGoogle Scholar
  200. Morscher RJ, Aminzadeh-Gohari S, Hauser-Kronberger C, Feichtinger RG, Sperl W, Kofler B. Combination of metronomic cyclophosphamide and dietary intervention inhibits neuroblastoma growth in a CD1-nu mouse model. Oncotarget. 2016;7(13):17060–73.PubMedPubMed CentralGoogle Scholar
  201. Allen BG, Bhatia SK, Buatti JM, Brandt KE, Lindholm KE, Button AM, Szweda LI, Smith BJ, Spitz DR, Fath MA. Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin Cancer Res. 2013;19(14):3905–13.PubMedPubMed CentralView ArticleGoogle Scholar
  202. Mavropoulos JC, Buschemeyer 3rd WC, Tewari AK, Rokhfeld D, Pollak M, Zhao Y, Febbo PG, Cohen P, Hwang D, Devi G, et al. The effects of varying dietary carbohydrate and fat content on survival in a murine LNCaP prostate cancer xenograft model. Cancer Prev Res (Phila). 2009;2(6):557–65.View ArticleGoogle Scholar
  203. Kim HS, Masko EM, Poulton SL, Kennedy KM, Pizzo SV, Dewhirst MW, Freedland SJ. Carbohydrate restriction and lactate transporter inhibition in a mouse xenograft model of human prostate cancer. BJU Int. 2012;110(7):1062–9.PubMedPubMed CentralView ArticleGoogle Scholar
  204. Lv M, Zhu X, Wang H, Wang F, Guan W. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis. PLoS One. 2014;9(12):e115147.PubMedPubMed CentralView ArticleGoogle Scholar
  205. Zhuang Y, Chan DK, Haugrud AB, Miskimins WK. Mechanisms by which low glucose enhances the cytotoxicity of metformin to cancer cells both in vitro and in vivo. PLoS One. 2014;9(9):e108444.PubMedPubMed CentralView ArticleGoogle Scholar
  206. Hao GW, Chen YS, He DM, Wang HY, Wu GH, Zhang B. Growth of human colon cancer cells in nude mice is delayed by ketogenic diet with or without omega-3 fatty acids and medium-chain triglycerides. Asian Pac J Cancer Prev. 2015;16(5):2061–8.PubMedView ArticleGoogle Scholar
  207. Maroon JC, Seyfried TN, Donohue JP, Bost J. The role of metabolic therapy in treating glioblastoma multiforme. Surg Neurol Int. 2015;6:61.PubMedPubMed CentralView ArticleGoogle Scholar
  208. Rieger J, Bahr O, Maurer GD, Hattingen E, Franz K, Brucker D, Walenta S, Kammerer U, Coy JF, Weller M, et al. ERGO: a pilot study of ketogenic diet in recurrent glioblastoma. Int J Oncol. 2014;44(6):1843–52.PubMedPubMed CentralGoogle Scholar
  209. Klement RJ. Calorie or carbohydrate restriction? The ketogenic diet as another option for supportive cancer treatment. Oncologist. 2013;18(9):1056.PubMedPubMed CentralView ArticleGoogle Scholar
  210. Klement RJ. Restricting carbohydrates to fight head and neck cancer-is this realistic? Cancer biol med. 2014;11(3):145–61.PubMedPubMed CentralGoogle Scholar
  211. Tan-Shalaby JL, Carrick J, Edinger K, Genovese D, Liman AD, Passero VA, Shah RB. Modified Atkins diet in advanced malignancies – final results of a safety and feasibility trial within the Veterans Affairs Pittsburgh Healthcare System. Nutr Metab (Lond). 2016;13:52.View ArticleGoogle Scholar
  212. Schmidt M, Pfetzer N, Schwab M, Strauss I, Kammerer U. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: A pilot trial. Nutr Metab. 2011;8(1):54.View ArticleGoogle Scholar
  213. Champ CE, Palmer JD, Volek JS, Werner-Wasik M, Andrews DW, Evans JJ, Glass J, Kim L, Shi W. Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme. J Neuro-Oncol. 2014;117(1):125–31.View ArticleGoogle Scholar
  214. Champ CE, Mishra MV, Showalter TN, Ohri N, Dicker AP, Simone NL. Dietary recommendations during and after cancer treatment: consistently inconsistent? Nutr Cancer. 2013;65(3):430–9.PubMedView ArticleGoogle Scholar
  215. Fine EJ, Segal-Isaacson CJ, Feinman RD, Herszkopf S, Romano MC, Tomuta N, Bontempo AF, Negassa A, Sparano JA. Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition. 2012;28(10):1028–35.PubMedView ArticleGoogle Scholar
  216. Schwartz K, Chang HT, Nikolai M, Pernicone J, Rhee S, Olson K, Kurniali PC, Hord NG, Noel M. Treatment of glioma patients with ketogenic diets: report of two cases treated with an IRB-approved energy-restricted ketogenic diet protocol and review of the literature. Cancer metab. 2015;3:3.PubMedPubMed CentralView ArticleGoogle Scholar
  217. Klement RJ, Sweeney RA. Impact of a ketogenic diet intervention during radiotherapy on body composition: I. Initial clinical experience with six prospectively studied patients. BMC Res Notes. 2016;9:143.PubMedPubMed CentralView ArticleGoogle Scholar
  218. Freeman JM, Kossoff EH, Freeman JB, Kelly MT. The Ketogenic Diet: A Treatment for Children and Others with Epilepsy. 4th ed. New York: Demos; 2007.Google Scholar
  219. Mantis JG, Centeno NA, Todorova MT, McGowan R, Seyfried TN. Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet: role of glucose and ketone bodies. Nutr Metab (Lond). 2004;1(1):11.View ArticleGoogle Scholar
  220. Cahill Jr GF, Veech RL. Ketoacids? Good medicine? Trans Am Clin Climatol Assoc. 2003;114:149–61. discussion 162–143.PubMedPubMed CentralGoogle Scholar
  221. Fein EJ, Feinman RD. Insulin, carbohydrate restriction, metabolic syndrome and cancer. Expert Rev Endocrinol Metab. 2015;10:15–24.View ArticleGoogle Scholar
  222. Sato K, Kashiwaya Y, Keon CA, Tsuchiya N, King MT, Radda GK, Chance B, Clarke K, Veech RL. Insulin, ketone bodies, and mitochondrial energy transduction. Faseb J. 1995;9(8):651–8.PubMedGoogle Scholar
  223. VanItallie TB, Nufert TH. Ketones: metabolism’s ugly duckling. Nutr Rev. 2003;61(10):327–41.PubMedView ArticleGoogle Scholar
  224. Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill Jr GF. Ketone bodies, potential therapeutic uses. IUBMB Life. 2001;51(4):241–7.PubMedView ArticleGoogle Scholar
  225. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59(3):527–605.PubMedGoogle Scholar
  226. Fine EJ, Miller A, Quadros EV, Sequeira JM, Feinman RD. Acetoacetate reduces growth and ATP concentration in cancer cell lines which over-express uncoupling protein 2. Cancer Cell Int. 2009;9:14.PubMedPubMed CentralView ArticleGoogle Scholar
  227. Ciraolo ST, Previs SF, Fernandez CA, Agarwal KC, David F, Koshy J, Lucas D, Tammaro A, Stevens MP, Tserng KY, et al. Model of extreme hypoglycemia in dogs made ketotic with (R, S)-1,3-butanediol acetoacetate esters. Am J Phys. 1995;269(1 Pt 1):E67–75.Google Scholar
  228. Chance B, editor. Energy-Linked Functions of Mitochondria. New York: Academic; 1963.Google Scholar
  229. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013;339(6116):211–4.PubMedView ArticleGoogle Scholar
  230. West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 2014;124(1):30–9.PubMedPubMed CentralView ArticleGoogle Scholar
  231. Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D’Agostino D, Planavsky N, Lupfer C, Kanneganti TD, et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 2015;21(3):263–9.PubMedPubMed CentralGoogle Scholar
  232. Kossoff EH, Zupec-Kania BA, Amark PE, Ballaban-Gil KR, Christina Bergqvist AG, Blackford R, Buchhalter JR, Caraballo RH, Helen Cross J, Dahlin MG, et al. Optimal clinical management of children receiving the ketogenic diet: recommendations of the International Ketogenic Diet Study Group. Epilepsia. 2009;50(2):304–17.PubMedView ArticleGoogle Scholar
  233. Jang HJ, Boo HJ, Lee HJ, Min HY, Lee HY. Chronic Stress Facilitates Lung Tumorigenesis by Promoting Exocytosis of IGF2 in Lung Epithelial Cells. Cancer Res. 2016;76(22):6607–19.PubMedView ArticleGoogle Scholar
  234. Feng Z, Liu L, Zhang C, Zheng T, Wang J, Lin M, Zhao Y, Wang X, Levine AJ, Hu W. Chronic restraint stress attenuates p53 function and promotes tumorigenesis. Proc Natl Acad Sci U S A. 2012;109(18):7013–8.PubMedPubMed CentralView ArticleGoogle Scholar
  235. Rush SE, Sharma M. Mindfulness-Based Stress Reduction as a Stress Management Intervention for Cancer Care: A Systematic Review. J Evid Based Complementary Altern Med. 2014;19:271–86.Google Scholar
  236. Lopes-Junior LC, Bomfim EO, Nascimento LC, Nunes MD, Pereira-da-Silva G, Lima RA. Non-pharmacological interventions to manage fatigue and psychological stress in children and adolescents with cancer: an integrative review. Eur J Cancer Care (Engl). 2016;25(6):921–35.View ArticleGoogle Scholar
  237. Bradt J, Dileo C, Magill L, Teague A. Music interventions for improving psychological and physical outcomes in cancer patients. Cochrane Database Syst Rev. 2016;8:CD006911.Google Scholar
  238. Levin GT, Greenwood KM, Singh F, Tsoi D, Newton RU. Exercise Improves Physical Function and Mental Health of Brain Cancer Survivors: Two Exploratory Case Studies. Integr Cancer Ther. 2016;15(2):190–6.PubMedView ArticleGoogle Scholar
  239. Ari C, Kovacs Z, Juhasz G, Murdun C, Goldhagen CR, Koutnik AM, Poff AM, Kesl SL, D’Agostino DP. Exogenous Ketone Supplements Reduce Anxiety-Related Behavior in Sprague–Dawley and Wistar Albino Glaxo/Rijswijk Rats. Front Mol Neurosci. 2016;9:137.PubMedPubMed CentralView ArticleGoogle Scholar
  240. Meynet O, Ricci JE. Caloric restriction and cancer: molecular mechanisms and clinical implications. Trends Mol Med. 2014;20(8):419–27.PubMedView ArticleGoogle Scholar
  241. De Lorenzo MS, Baljinnyam E, Vatner DE, Abarzua P, Vatner SF, Rabson AB. Caloric restriction reduces growth of mammary tumors and metastases. Carcinogenesis. 2011;32(9):1381–7.PubMedPubMed CentralView ArticleGoogle Scholar
  242. Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab. 2014;19(2):181–92.PubMedPubMed CentralView ArticleGoogle Scholar
  243. Al-Wahab Z, Tebbe C, Chhina J, Dar SA, Morris RT, Ali-Fehmi R, Giri S, Munkarah AR, Rattan R. Dietary energy balance modulates ovarian cancer progression and metastasis. Oncotarget. 2014;5(15):6063–75.PubMedPubMed CentralView ArticleGoogle Scholar
  244. Safdie FM, Dorff T, Quinn D, Fontana L, Wei M, Lee C, Cohen P, Longo VD. Fasting and cancer treatment in humans: A case series report. Aging (Albany NY). 2009;1(12):988–1007.View ArticleGoogle Scholar
  245. Raffaghello L, Lee C, Safdie FM, Wei M, Madia F, Bianchi G, Longo VD. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc Natl Acad Sci U S A. 2008;105(24):8215–20.PubMedPubMed CentralView ArticleGoogle Scholar
  246. Raffaghello L, Safdie F, Bianchi G, Dorff T, Fontana L, Longo VD. Fasting and differential chemotherapy protection in patients. Cell Cycle. 2010;9(22):4474–6.PubMedPubMed CentralView ArticleGoogle Scholar
  247. Marsh J, Mukherjee P, Seyfried TN. Drug/diet synergy for managing malignant astrocytoma in mice: 2-deoxy-D-glucose and the restricted ketogenic diet. Nutr Metab (Lond). 2008;5:33.View ArticleGoogle Scholar
  248. Williams DS, Cash A, Hamadani L, Diemer T. Oxaloacetate supplementation increases lifespan in Caenorhabditis elegans through an AMPK/FOXO-dependent pathway. Aging Cell. 2009;8(6):765–8.PubMedPubMed CentralView ArticleGoogle Scholar
  249. Farah IO. Differential modulation of intracellular energetics in A549 and MRC-5 cells. Biomed Sci Instrum. 2007;43:110–5.PubMedGoogle Scholar
  250. Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene. 2006;25(34):4633–46.PubMedView ArticleGoogle Scholar
  251. Pitter KL, Tamagno I, Alikhanyan K, Hosni-Ahmed A, Pattwell SS, Donnola S, Dai C, Ozawa T, Chang M, Chan TA, et al. Corticosteroids compromise survival in glioblastoma. Brain. 2016;139(Pt 5):1458–71.PubMedView ArticleGoogle Scholar
  252. Seyfried TN, Flores R, Poff AM, D’Agostino DP, Mukherjee P. Metabolic therapy: a new paradigm for managing malignant brain cancer. Cancer Lett. 2015;356(2 Pt A):289–300.PubMedView ArticleGoogle Scholar
  253. Seyfried TN, Shelton LM, Mukherjee P. Does the existing standard of care increase glioblastoma energy metabolism? Lancet Oncol. 2010;11(9):811–3.PubMedView ArticleGoogle Scholar
  254. Moen I, Stuhr LE. Hyperbaric oxygen therapy and cancer–a review. Target Oncol. 2012;7(4):233–42.PubMedPubMed CentralView ArticleGoogle Scholar
  255. Kohshi K, Beppu T, Tanaka K, Ogawa K, Inoue O, Kukita I, Clarke RE. Potential roles of hyperbaric oxygenation in the treatments of brain tumors. UHM. 2013;40(4):351–62.Google Scholar
  256. Poff AM, Kernagis D, D’Agostino DP. Hyperbaric Environment: Oxygen and Cellular Damage versus Protection. Comp Physiology. 2017;7(January 2017):213–34.Google Scholar
  257. D’Agostino DP, Colomb Jr DG, Dean JB. Effects of hyperbaric gases on membrane nanostructure and function in neurons. J Appl Physiol. 2009;106(3):996–1003.PubMedView ArticleGoogle Scholar
  258. Ma Y, Chapman J, Levine M, Polireddy K, Drisko J, Chen Q. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med. 2014;6(222):222ra218.View ArticleGoogle Scholar
  259. Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, Maguire C, Gammer TL, Mackey JR, Fulton D, et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med. 2010;2(31):31ra34.PubMedView ArticleGoogle Scholar
  260. Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, Murray AJ, Stubbs B, West J, McLure SW, et al. Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes. Cell Metab. 2016;24(2):256–68.PubMedView ArticleGoogle Scholar
  261. Murray AJ, Knight NS, Cole MA, Cochlin LE, Carter E, Tchabanenko K, Pichulik T, Gulston MK, Atherton HJ, Schroeder MA, et al. Novel ketone diet enhances physical and cognitive performance. FASEB J. 2016;30(12):4021–32.PubMedPubMed CentralView ArticleGoogle Scholar
  262. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105(48):18782–7.PubMedPubMed CentralView ArticleGoogle Scholar
  263. Reitzer LJ, Wice BM, Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem. 1979;254(8):2669–76.PubMedGoogle Scholar
  264. Dang CV. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Cell Cycle. 2010;9(19):3884–6.PubMedView ArticleGoogle Scholar
  265. Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, Campos C, Carlin SD, La Rocca G, Lyashchenko S, Ploessl K, et al. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med. 2015;7(274):274ra217.View ArticleGoogle Scholar
  266. Mueller C, Al-Batran S, Jaeger E, Schmidt B, Bausch M, Unger C, Sethuraman N. A phase IIa study of PEGylated glutaminase (PEG-PGA) plus 6-diazo-5-oxo-L-norleucine (DON) in patients with advanced refractory solid tumors. J Clin Oncol. 2008;26:2533. In: ASCO.Google Scholar
  267. Chakrabarti G, Moore ZR, Luo X, Ilcheva M, Ali A, Padanad M, Zhou Y, Xie Y, Burma S, Scaglioni PP, et al. Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by ss-lapachone. Cancer & metabolism. 2015;3:12.View ArticleGoogle Scholar
  268. Mates JM, Segura JA, Campos-Sandoval JA, Lobo C, Alonso L, Alonso FJ, Marquez J. Glutamine homeostasis and mitochondrial dynamics. Int J Biochem Cell Biol. 2009;41(10):2051–61.PubMedView ArticleGoogle Scholar
  269. Michalak KP, Mackowska-Kedziora A, Sobolewski B, Wozniak P. Key Roles of Glutamine Pathways in Reprogramming the Cancer Metabolism. Oxid Med Cell Longev. 2015;2015:964321.PubMedPubMed CentralView ArticleGoogle Scholar
  270. Huysentruyt LC, Mukherjee P, Banerjee D, Shelton LM, Seyfried TN. Metastatic cancer cells with macrophage properties: evidence from a new murine tumor model. Int J Cancer. 2008;123(1):73–84.PubMedView ArticleGoogle Scholar
  271. Shelton LM, Mukherjee P, Huysentruyt LC, Urits I, Rosenberg JA, Seyfried TN. A novel pre-clinical in vivo mouse model for malignant brain tumor growth and invasion. J Neurooncol. 2010;99(2):165–76.PubMedView ArticleGoogle Scholar
  272. Huysentruyt LC, Shelton LM, Seyfried TN. Influence of methotrexate and cisplatin on tumor progression and survival in the VM mouse model of systemic metastatic cancer. Int J Cancer. 2010;126(1):65–72.PubMedView ArticleGoogle Scholar
  273. Hamilton JD, Rapp M, Schneiderhan T, Sabel M, Hayman A, Scherer A, Kropil P, Budach W, Gerber P, Kretschmar U, et al. Glioblastoma multiforme metastasis outside the CNS: three case reports and possible mechanisms of escape. J Clin Oncol. 2014;32(22):e80–84.PubMedView ArticleGoogle Scholar
  274. Hoffman HJ, Duffner PK. Extraneural metastases of central nervous system tumors. Cancer. 1985;56(7 Suppl):1778–82.PubMedView ArticleGoogle Scholar
  275. Xu M, Wang Y, Xu J, Yao Y, Yu WX, Zhong P. Extensive Therapies for Extraneural Metastases from Glioblastoma, as Confirmed with the OncoScan Assay. World Neurosurg. 2016;90:698 e697–11.View ArticleGoogle Scholar
  276. Yasuhara T, Tamiya T, Meguro T, Ichikawa T, Sato Y, Date I, Nakashima H, Ohmoto T. Glioblastoma with metastasis to the spleen–case report. Neurol Med Chir (Tokyo). 2003;43(9):452–6.View ArticleGoogle Scholar
  277. Kalokhe G, Grimm SA, Chandler JP, Helenowski I, Rademaker A, Raizer JJ. Metastatic glioblastoma: case presentations and a review of the literature. J Neurooncol. 2012;107(1):21–7.PubMedView ArticleGoogle Scholar
  278. Huysentruyt LC, Akgoc Z, Seyfried TN. Hypothesis: are neoplastic macrophages/microglia present in glioblastoma multiforme? ASN neuro. 2011;3(4):AN20110011.View ArticleGoogle Scholar
  279. Newsholme P. Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J Nutr. 2001;131(9 Supp):2515–2522S. discussion 2523S-2514S.Google Scholar
  280. Shelton LM, Huysentruyt LC, Mukherjee P, Seyfried TN. Calorie restriction as an anti-invasive therapy for malignant brain cancer in the VM mouse. ASN neuro. 2010;2(3):e00038.PubMedPubMed CentralView ArticleGoogle Scholar
  281. Seyfried TN. Metabolic management of cancer. In: Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. edn. Hoboken: Wiley; 2012. p. 291–354.View ArticleGoogle Scholar
  282. Arismendi-Morillo G. Electron microscopy morphology of the mitochondrial network in human cancer. Int J Biochem Cell Biol. 2009;41(10):2062–8.PubMedView ArticleGoogle Scholar
  283. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell. 2013;155(1):160–71.PubMedPubMed CentralView ArticleGoogle Scholar

Copyright

© The Author(s). 2017
$$$ If you are interested in a writer or editor position, check out here.We are hiring. $$$

91

No Responses

Write a response

three × 1 =