Press-pulse: a novel therapeutic strategy for the metabolic management of cancer 癌症代謝管理的新治療策略

中文版谷歌中文翻譯(90% 準確率) | English translation
Buy/Sell Your Domains Here。在這裡購買/出售您的域名
Contact Dr. Lu for information about cancer treatments。聯繫盧博士,獲取有關癌症治療資訊。

In contrast to D-β-hydroxybutyrate, L-β-hydroxybutyrate is beta-oxidized thus producing both NADH and FADH2. FADH2 will deliver electrons to Complex III, which can increase the semiquinone of Q, the half-reduced form. The Q semiquinone will react with molecular oxygen to form the superoxide O2 .- free radical [145]. Therapeutic ketosis with racemic ketone esters can also make it feasible to safely sustain hypoglycemia for inducing metabolic stress on cancer cells [227]. Hence, mixtures of L- and D-ketone esters have the potential to both enhance oxidative stress in tumor cells while reducing oxidative stress in normal cells, respectively [145, 228]. There is also evidence showing that ketone bodies can inhibit histone deacetylases (HDAC) [229]. HDAC inhibitors play a role in targeting the cancer epigenome [230]. Deregulated inflammation is also considered to be one of the hallmarks of cancer. Therapeutic ketosis reduces circulating inflammatory markers, and ketones directly inhibit the NLRP3 inflammasome, an important pro-inflammatory pathway linked to carcinogenesis and an important target for cancer treatment response [231]. There are no adverse side effects of short-term therapeutic ketosis, but relatively mild adverse effects have been noted in some children with epilepsy after long-term use of ketogenic diets including constipation, kidney stones, electrolyte imbalances, and bone fracture [218]. These adverse effects were easily managed with various supplements and pale in comparison to the adverse effects produced from current standards of care [232]. In general, there are no currently known cancer drugs that embody the therapeutic properties of ketone bodies.

Psychological stress reduction: a press disturbance

Chronic psychological stress is known to promote tumorigenesis through elevations of blood glucose, glucocorticoids, catecholamines, and insulin-like growth factor (IGF-1) [233, 234]. In addition to calorie-restricted ketogenic diets, psychological stress management involving exercise, yoga, music etc. also act as press disturbances that can help reduce fatigue, depression, and anxiety in cancer patients and in animal models [235, 236, 237, 238]. Ketone supplementation has also been shown to reduce anxiety behavior in animal models [239]. The mechanism of action of psychological stress management for cancer control would largely involve reductions in blood glucose levels that contribute to tumor growth.

Restricted ketogenic diet used with 2-Deoxyglucose

Calorie restriction or therapeutic fasting is anti-angiogenic, anti-inflammatory, and pro-apoptotic, and thus targets multiple cancer hallmarks [114, 166, 167, 170, 171, 182, 240, 241, 242, 243]. This physiological state also enhances the efficacy of chemotherapy and radiation therapy, while reducing the side effects [244, 245, 246]. Indeed, lower dosages of chemotherapeutic drugs can be used when administered together with calorie restriction or restricted ketogenic diets (KD-R). We showed a synergistic interaction between a KD-R and the glycolysis inhibitor 2-deoxyglucose (2-DG) for the metabolic management of the syngeneic CT-2A malignant mouse glioma [247]. It was interesting to find that 2-DG (25 mg/kg) had no therapeutic effect on CT-2A tumor growth when administered alone to mice on a standard high carbohydrate diet, but had a powerful therapeutic effect when administered with a KD-R. Indeed, this relatively low dose of 2-DG became somewhat toxic when used with the KD suggesting that lower dosing of some tumor-targeting drugs could also be effective when administered with KD-R. Besides 2-DG, a range of other glycolysis inhibitors might also produce similar therapeutic effects when combined with the KD-R including 3-bromopyruvate, oxaloacetate, and lonidamine [58, 186, 248, 249, 250]. In the example here the KD-R is the press making cancer cells selectively vulnerable to death and the 2-DG is the pulse, which could be used intermittently or cycled to avoid toxicity.

Ketogenic diet used with radiation therapy

Adrienne Scheck and colleagues showed that the therapeutic efficacy of radiotherapy against the orthotopically grown GL261 mouse glioma could be greatly enhanced when combined with a commercially available ketogenic diet [183]. Mice fed the KetoCal ketogenic diet had elevated levels of β-hydroxybutyrate and an increased median survival of approximately 5 days relative to animals maintained on a high-carbohydrate standard diet alone. A synergistic interaction of the KD diet plus radiation was seen, as no bioluminescent signal was detected in 9 of 11 that received the combined treatment. Furthermore, no signs of tumor recurrence were seen for over 200 days when the treated mice were switched to the SD 101 days after tumor implantation. These findings suggest tumor resolution in some of the mice treated with the combined therapy. In this example, the KD is the press and radiotherapy is the pulse. It is important to recognize, however, that the radiotherapy used in glioma patients can damage the respiration of normal cells and increase availability of glutamine in the microenvironment, which can increase risk of tumor recurrence especially when used together with the steroid drug dexamethasone [31, 251, 252, 253].

A Ketogenic diet used with hyperbaric oxygen therapy

Poff and colleagues demonstrated that hyperbaric oxygen therapy (HBOT) enhanced the ability of the KD to reduce tumor growth and metastasis [40]. Evidence in animal models and in humans suggests that HBOT may have a modest anti-cancer effect when used alone [254], but appears most efficacious when it is used in combination with standard care. Indeed, HBOT has proven effective when used prior to radiation therapy for GBM [255]. The mechanism of HBOT in tumor management is not yet clear, but saturating the tumor with oxygen could reverse hypoxia and suppresses growth [254, 256] HBOT also increases oxidative stress and membrane lipid peroxidation of GBM cells in vitro [257]. The effects of the KD and HBOT can be enhanced with administration of exogenous ketones, which further suppressed tumor growth and metastasis [190]. Besides HBOT, intravenous vitamin C and dichloroacetate (DCA) can also be used with the KD to selectively increase oxidative stress in tumor cells [258, 259]. Recent evidence also shows that ketone supplementation may enhance or preserve overall physical and mental health [260, 261], which are often compromised due to disease progression and standard of care therapies. Under these conditions the KD with exogenous ketones serve as the press, while HBOT serves as the pulse. Although HBOT and radiotherapy kill tumor cells through oxidative stress, HBOT is less toxic to normal cells than is radiotherapy.

$$$ If you are interested in a writer or editor position, check out here.We are hiring. $$$

91

No Responses

Write a response

two × 2 =