Press-pulse: a novel therapeutic strategy for the metabolic management of cancer 癌症代謝管理的新治療策略

中文版谷歌中文翻譯(90% 準確率) | English translation
Buy/Sell Your Domains Here。在這裡購買/出售您的域名
Contact Dr. Lu for information about cancer treatments。聯繫盧博士,獲取有關癌症治療資訊。

Calorie restriction used with glutamine targeting for metastatic cancer

Some tumors use glucose as a prime fuel for growth, whereas other tumors use glutamine as a prime fuel [102, 186, 262, 263, 264]. Glutamine-dependent tumors are generally less detectable than glucose-dependent under FDG-PET imaging, but could be detected under glutamine-based PET imaging [265]. Glutamine targeting should have therapeutic benefit against those tumors that depend on glutamine for growth and survival. We found that the highly metastatic VM-M3 tumor cells are dependent primarily on availability of glutamine for growth and ability to spread systemically [108]. The glutaminase inhibitor DON (6-diazo-5-oxo-L-norleucine) has shown therapeutic benefit in the clinic, as long as toxicity can be managed [186, 266]. DON could work best when combined with inhibitors of glycolysis such as lonidamine [186]. In addition to DON, other glutamine inhibitors ((bis-2-(5-phenylacetamido-1,2, 4-thiadiazol-2-yl)ethyl sulfide, BPTES, or CB-839) could also be therapeutic in targeting glutamine-dependent tumors [267]. A greater attention to possible adverse effects will be needed for glutamine targeting than for glucose targeting, as glutamine is involved with several essential physiological functions especially for cells of the immune system [268, 269]. It might therefore be necessary to also periodically schedule glutamine supplementation with glutamine targeting to obtain maximum therapeutic benefit while protecting immune system function.

The VM-M3 tumor is an excellent model system for evaluating the role of glutamine as a metabolic driver of invasive and metastatic cancer. The VM-M3 tumor arose spontaneously in the brain of its syngeneic immunocompetent VM/Dk inbred mouse host [270]. The tumor was classified as a glioblastoma (GBM) based on histological appearance, invasive growth behavior in brain, and systemic metastasis when give access to extraneural sites [271, 272, 273, 274, 275, 276, 277]. The neoplastic VM-M3 tumor cells share several characteristics with mesenchymal microglia/macrophages, which are abundant in GBM and use glutamine as a major fuel [278, 279]. Although calorie restriction could partially reduce distal invasion of VM-M3 tumor cell in brain and reduce primary tumor growth in flank, CR did not prevent systemic metastasis despite causing reduction in blood glucose and elevation of ketone bodies [108, 280]. However, DON had a major effect in reducing both primary tumor size and systemic metastasis indicative of the importance of glutamine in driving this tumor [108]. A synergistic interaction was also seen when DON was combined with calorie restriction [281]. Modifications of DON scheduling, timing, and dosing would be needed to improve efficacy and reduce toxicity. In this example, CR is the press and DON is the pulse. As glutamine is a major fuel of immune cells, glutamine targeting should be effective in reducing most metastatic cancers that have characteristics of macrophages and other immune cells [121].

Optimization of scheduling, timing, and dosing

The success of the press-pulse therapeutic strategy for the metabolic management of cancer will depend on optimization of the scheduling, dosing, and timing of the various diets, drugs, and procedures used in order to achieve maximum synergistic interactions (Fig. 2). Scheduling will involve the order in which the chosen pulses are delivered to the subject while under dietary therapy. Timing will determine when and for how long the presses and pulses are given (number/day,/week,/month etc.). Dosing will identify the optimal drug dosages needed to kill tumor cells while preventing or minimizing systemic toxicity. Scheduling for each of these variables can be adjusted for the age, sex, and general health status of the subject. The strategy should degrade tumor cell populations gradually to prevent tumor lysis syndrome, which could cause excessive toxicity. Tumor imaging procedures involving FDG-PET, magnetic resonance imaging (MRI), and computed tomography perfusion (CTP), as well as analysis of serum cancer biomarkers should be helpful in assessing therapeutic success. The goal of the press-pulse therapeutic strategy is to improve progression-free and overall survival from cancer without producing adverse effects from the treatment.

Fig. 2

Illustration of the Press-Pulse Therapeutic Strategy for Cancer Management. The “Press-Pulse” therapeutic strategy considers cancer as a singular systemic disease regardless of the specific tissue or organ system containing invasive or metastatic tumor cells. This strategy is designed to target the glucose and glutamine dependency of tumor cells, while enhancing the metabolic efficiency in normal cells. Press therapies are designed to reduce systemic glucose availability while elevating blood levels of ketone bodies, which tumor cells cannot effectively use for energy generation. This approach pits the metabolic demands of normal cells against those of the mutated tumor cells, which are less capable than normal cells in adapting to metabolic stress from nutrient deprivation. Ketone body supplements could further reduce glucose levels while enhancing the respiratory energy metabolism in normal cells. Stress management techniques together with exercise could further stress tumor cell metabolism while improving general health. The press therapies would be designed to work synergistically with acute pulse therapies to further target glucose and glutamine metabolism. HBOT will work together with the press therapies to selectively increase oxidative stress in tumor cells. The spacing between the various pulse therapies is designed to stress tumor cell metabolism while minimizing toxicity to normal body cells. This therapeutic strategy will target the fermentation metabolism common to most tumor cells, thus gradually degrading tumor burden. The progressive color change in the Vitruvian man drawing from red (diseased with darker red spots indicative of metastatic lesions), to yellow (reduced metastasis), to green (resolution) symbolizes a gradual metabolic management and resolution of cancer. The pill symbol is indicative of glycolysis targeting that could be delivered orally. The Rx symbol is indicative of glutamine targeting that could be delivered intravenously. Pulse therapies would terminate with evidence of management or resolution while press therapies could continue under modification or adjustment (arrow). Optimization of dosing, timing, and scheduling of the press-pulse therapeutic strategy will facilitate the eradication of tumor cells with minimal patient toxicity. This therapeutic strategy can be used as a framework for the design of clinical trials for the majority of cancers. HBOT, hyperbaric oxygen therapy; KD-R, calorie restricted ketogenic diet

$$$ If you are interested in a writer or editor position, check out here.We are hiring. $$$

91

No Responses

Write a response

3 + 15 =